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Introduction

Classical Mechanics covers the basics behind equations of motion and energy and utilises many useful techniques for
simplifying problems. Special Relativity covers the even more basics behind equations of motion at high speeds and
the unintuitive nature of the results.

Disclaimer: This document was made by a first year student. I make absolutely no guarantee that this document is
complete nor without error. In particular, any content covered exclusively in lectures (if any) will not be recorded here.
Additionally, this document was written at the end of the 2022 academic year, so any changes in the course since then
may not be accurately reflected.

Notes on formatting
New terminology will be introduced in italics when used for the first time. Named theorems will also be introduced in
italics. Important points will be bold. Common mistakes will be underlined. The latter two classifications are under
my interpretation. YMMV.

Content not taught in the course will be outlined in the margins like this. Anything outlined like this is not examinable,
but has been included as it may be helpful to know alternative methods to solve problems. It also hasn’t been included
:)

The table of contents above, and any inline references are all hyperlinked for your convenience.

History
First Edition: 2022-06-12∗

Current Edition: 2022-06-12

∗Storing dates in big-endian format is clearly the superior option, as sorting dates lexicographically will also sort dates chronologically,
which is a property that little and middle-endian date formats do not share. See ISO-8601 for more details. This footnote was made by the
computer science gang.
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Authors
This document was written by A.K.Knight, a mathphys student, mostly following the 2022 lecture notes. I am not
otherwise affiliated with the university, and cannot help you with related matters.

Please send me a PM on Discord @RisingStar111#0563 or send a message in the related channels in teh WMX or
Physics discord servers for any corrections/additions/layout changes. (If this document somehow manages to persist
for more than a few years, these contact details might be out of date, depending on the maintainers. Please check the
most recently updated version you can find.)

If you found this guide helpful and want to support some random person on the maths course whom I stole this
document’s format from (not me), you can buy them a coffee!

(Direct link for if hyperlinks are not supported on your device/reader: ko-fi.com/desync.)
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1 Classical Mechanics

1.1 Newton’s Laws
Newton’s First Law - Bodies remain at constant velocity unless acted upon by a (net) force.

Newton’s Second Law - Defining momentum as p = mv, Force is the rate of change of momentum, so

F⃗ =
dp

dt
= m

dv

dt
= ma⃗ (1)

Newton’s Third Law - Every action (force) has an equal and opposite reaction (force).

1.2 Forces
Scalars - Quantities like mass and speed whose values are defined only by their magnitude (can be negative).

Vectors - Quantities like force and velocity whose values are defined by both their magnitude and direction. Arrows
should be used to indicate vectors, as used in this document.

Normal reaction force - Part of the contact force, perpendicular to the surface.

Friction force - (The other) part of the reaction force, parallel to the surface.

F ≤ µSN and F = µKN (2)

using the coefficient of static µS or kinetic µK friction. In general, µK < µS

Example of one of those diagrams you should be drawing - typical block on slope setup.

θ
W = mg

F = µN

N = −W cos(θ)

Force of Gravity - The attractive force from an object with mass m1 on an object with mass m2 given by

F =
Gm1m2

r2
or in vector form F⃗12 = −Gm1m2

r2
r̂ (3)

Newton’s shell theorem - The force from a uniform spherical shell/sphere on a particle is the same as the force from a
particle with the same mass as the sphere/[mass of sphere contained within radius to particle] at the origin.

Forces on systems of particles - Total external force affects the centre of mass of the system.∑
F⃗ = mtotalacm (4)

Centre of mass - For distinct bodies on left, and continous bodies with density function on right, the centre of mass
(cm) of the system is (note: dm = f(ρ)dV )

r⃗cm =

∑
mir⃗cmi∑
mi

r⃗cm =

∫
r⃗ dm∫
dm

(5)
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1.3 Properties of Objects
Lots of silly words to remember :⊃

Smooth - No friction.
Light - No mass.
Massive - Has mass. Do not assume that it is large/has size.
Rigid - Can not bend.
Flexible - Just think of a string.
Ideal - Codeword for applying a bunch of these words. Ideal strings are light flexible not stretchy, ideal pulleys are light
frictionless rigid, etc.
Uniform - Constant density.
Elastic - No (kinetic) energy is lost on collision.
Particle - All mass is located at a single point (no size/rotation).

Pulleys - Redirect forces through strings. Tension in the string is constant if the pulley and string are ideal.

1.4 Acceleration

Constant acceleration - Can use SUVAT (v = u+ at, s = ut+ 1
2at

2, s = vt− 1
2at

2, v2 = u2 + 2as, s = v+u
2 t)

Time-dependant acceleration - Same process as deriving SUVAT but a is a function of time t.

Position-dependant acceleration - a is a function of position x. Chain rule leads to

1

2
(v2 − u2) =

∫ x

0

a dx (6)

Velocity-dependant acceleration - Solve and rearrange the following for v(t) and integrate for x(t).∫ v

u

dv

a(v)
=

∫ t

0

dt = t (7)

2 Work and Energy

Kinetic Energy - Defined as T = 1
2mv2.

Work Done - W =
∫
F dx =

∫
dT = ∆T i.e Work Done (on an object) is the Change in Kinetic Energy. (For general

F⃗ , dW = F⃗ · dr⃗ = F cos(θ) dr = dT )

Conservative Field - Work done is independant of path travelled, resulting in loops in a conservative field doing no net
work.

Potential Energy - In a conservative field, the energy associated with a position is called U = −W (from a fixed point
O to an arbitrary point P). Negative so that work from high to low potential is positive

Total Energy - Total energy E, for a conservative field, E = T + U = constant.

Forces from Potential - F⃗ = −∇U .

Be very careful with signs when using Work - When you do work on an object, W = ∆U i.e you do work to
move things to higher potentials, while the Force (of the field) does work to move objects to lower potential.

Gravitational Potential Energy - U(r) = −GMm
r . (If deriving, usually U(∞) = 0). ’Gravitational potential’ ϕ(r) can

sometimes be used to mean potential per unit mass, u(r) = −GM
r .

Power - P = dW
dt = F⃗ · dr⃗

dt = F⃗ · v⃗

2.1 Rockets
Rockets? - Remember to take into account the change in mass dm < 0 as the rocket burns fuel (leaving at speed ve
from the rocket) and conserve momentum. (Ik it’s weird, but after time dt, m goes to m+ dm so dm < 0)

mdv = −ve dm (8)
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The Rocket Equation - From integrating ↑, with m0, v0 the initial mass/speed and m, v the final mass/speed.

v − v0 = ∆v = ve ln
(m0

m

)
(9)

Thrust - Because we only care about the lowest order infinitesimals, can write

change in momentum of the Rocket(plus fuel) dp = −ve dm (10)

F =
dp

dt
= −ve

dm

dt
, dm < 0 remember (11)

2.2 Collisions
Generalised Collisions - Momentum is conserved so so is the speed of the centre of mass vcm. Potentials don’t matter
as interactions are short range and over short times.
You can resolve multidimensional collisions into components as expected.

v⃗cm =
p⃗cm
mcm

=
m1v⃗1 +m2v⃗2
m1 +m2

(12)

Inelastic Collisions - Particles stick together, so v⃗1 = v⃗2 = v⃗cm

Elastic Collisions - Particles’ speed in the CoM frame stay constant (note speed not velocity).

3 Simple Harmonic Motion (SHM)

The Equation - ẍ+ ω2x = 0

General Solution to SHM - x = A cos(ωt) +Bsin(ωt) = C cos(ωt+ ϕ) = Deiωt where A,B,C are real constants, and D
is a complex constant Ceiϕ. When using complex form, physical results are obtained with the real part of the solution.

Frequency - f = ω
2π = 1

T where T is the ’Time Period’.

3.1 Springs
Mass on a Spring - Intuition and derivation from F = −kx

d2x

dt2
= −ω2x where ω2 =

k

m
(13)

Potential of a Spring - Using the work you do against the spring force and defining x=0 as zero potential,

W =

∫ x

0

F dx =

∫ x

0

kx dx =
1

2
kx2 = U (14)

Note: Parabolic potential U ∝ x2 usually means SHM.

Average energy of a Spring - ⟨T ⟩ = ⟨U⟩ = 1
4kA

2

Pendulum - Small angle approximations ftw
d2θ

dt2
= −g

l
sin(θ) (15)

ω2 =
g

l
(16)

T = 2π

√
l

g
(17)
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3.2 Damping

Damped SHM - ẍ+ γẋ+ ω2x = 0 where γ = b
m where b is from the damping force −bẋ.

Solution to Damped SHM - Using the complex form,

Solution guess of z = Aept leads to (18)

p = −γ

2
±
√(γ

2

)2

− ω2 (19)

Modes of Damping - Depending on p, the physical motion described by the damping equation will change:

γ = 0 - No damping occurs (there’s no resistive force).

γ < 2ω - light/under-damping (still oscillates, but magnitude decreases)

x = |a|e−γt/2 cos(ω′t+ ϕ), where ω′ =

√
ω2 −

(γ
2

)2

(20)

γ > 2ω - heavy/over-damping (no oscillation, just returns to rest)

z = Aep1t +Bep2t, (remember x = ℜ(z)) (21)

where

p1,2 = −γ

2
±
√(γ

2

)2

− ω2 (22)

γ = 2ω - critical damping (fastest return to rest)

z = (a+ bt)e−γt/2 (23)

3.3 Forced Oscillation
Forced Oscillation - A force F = F0 cos(ωt) is applied to the damped system, giving

z̈ + γż + ω2
0z =

F0

m
cos(iωt) (24)

ω0 is the natural frequency, as opposed to the applied frequency ω

z = |a|ei(ωt+ϕ) so x = ℜ(z) = |a| cos(ωt+ ϕ) (25)

a =
F0/m

(ω2
0 − ω2) + iγω

(26)

|a| = F0/m√
(ω2

0 − ω2)2 + (γω)2
(27)

tan(ϕ) = − γω

ω2
0 − ω2

(28)

|a|
|a|0

=
ω2
0√

(ω2
0 − ω2)2 + (γω)2

(29)
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no you can’t tell me what to do

Resonance - For lightly damped systems, as ω approaches ω0 the amplitude increases, peaking when they’re equal

Phase difference - The system gets increasingly out of phase, lagging behind the applied force, as ω increases. ϕ = 0
for ω ≪ ω0, ϕ = −90° for ω = ω0 and ϕ → −180° as ω → ∞

Other fun resonance stuff - The ’Full Width at Half Maximum’ FWHM plotted against energy (∝ |a|2) is ≈ γ

The peak |a|
|a|0 ≈ ω0

γ = Q the ’Q-factor’.

4 Circular Motion

Angular Velocity - Defining the angular velocity ω = dθ
dt

v = ωr (30)

a = ωv = ω2r =
v2

r
(31)

Period =
2π

ω
(32)

Or as as vectors so that direction of rotation is defined, with ω⃗ along the axis of rotation (order is important here)

v⃗ = ω⃗ × r⃗ (33)

Circular Orbits - Balancing force from gravity and force needed to maintain an angular velocity

F =
GMm

R2
= mω2R = ma (34)

ω2 =
GM

R3
=

4π2

P 2
(35)

Kepler’s Third Law - P 2 ∝ R3

4.1 Offset Forces

Moments - ’Rotational force’ given by Fx with F⃗ perpendicular to x⃗

Torques - Generalised Moments, measured with respect to a chosen Origin (if this point changes, so does the torque)

τ⃗ = r⃗ × F⃗ (36)
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Defining the angular momentum L⃗ = r⃗ × p⃗

τ⃗ =
dL⃗

dt
(37)

The torque is the rate of change of momentum

Systems - Total external torque equals the rate of change of total angular momentum.

Equilibrium - A body in equilibrium will have zero torque around any point.

Centre of gravity - The point about which gravitational forces have 0 total torque (likely not the centre of gravity unless
the gravitational field is constant, in which case they are always the same).

4.2 Angular Momentum
Angular Momentum on a Circle - When the origin (for calculating torques) is at the centre of rotation for circular
motion,

L = mrv = mr2ω parallel to and in the same direction as the axis of rotation ω⃗ (38)

Moment of Inertia - I = mr2

Kinetic Energy - In this special case, L⃗ = Iω⃗ Second

T =
1

2
Iω2 (39)

Rigid Bodies - If all parts of a body are rotating around the same axis but not necessarily in the same plane, defining

I =
∑

mir
2
i i =

∫
r2 dm =

∫
r2ρ dV (40)

with r the perpendicular distance to the axis of rotation at a point r⃗, we keep the relation T = 1
2Iω

2. Additionally, in
this module, L⃗ = Iω⃗ always holds.

Angular Acceleration - As (in this module) τ⃗ is parallel to ω⃗, then angular acceleration dω
dt is defined in

τ =
dL

dt
= I

dω

dt
= I

d2θ

dt2
(41)

4.3 Using Moment of Inertia
General Problems - Take care over the position at which forces act and remember torque exists.

Parallel Axis Theorem - The moment of inertia around an axis a perpendicular distance d away from an object’s centre
of mass is the same as the moment of inertia around a parallel axis through the objects centre of mass plus Md2

Conservation of Angular Momentum - Under no net external torques, angular momentum is conserved.

General Kinetic Energy - When applying a force to an unconstrained object, offset from its centre of mass, both a
torque and acceleration are created

T =
1

2
mvcm

2 +
1

2
Iω2 (42)

with I measured around an axis through the centre of mass and parallel to ω⃗

Angular Power - dW = τdθ so P = τ⃗ · ω⃗

I = I(∥) +Md2 (43)

Useful Moments of Inertia - May be asked to derive these, but nice to know these for other things too
Ring about an axis through its centre - MR2

Uniform disk about an axis through its centre - 1
2MR2

Uniform sphere about an axis through its centre - 2
5MR2

Thin rod length L, about a perpendicular axis through its centre - 1
12ML2

Thin rod length L, about a perpendicular axis through an end - 1
3ML2
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5 Special Relativity

5.1 Time and Position
Rules of Relativity - Physics is the same in all reference frames. The speed of light is constant.

The Lorentz Transforms - Remember these. To go backwards sub −u for u. Other dimensions are constant if the frames
are defined nicely.

γ =
1√

1− v2/c2
(44)

t′ = γ(t− ux/c2) (45)

x′ = γ(x− ut) (46)

Length Contraction - Lu = L0/γ, Lu is the length measured (Simultaneously at 2 locations) in the frame where the
object is moving at speed u.

Time Dilation - ∆Tu = γ∆T0, ∆Tu is the change in time measured (between two events) in the frame where the object
is moving at speed u.

5.2 Velocity
Doppler Effect - + for moving away, - for moving towards

f0
f

=
λ

λ0
= γ

(
1± u

c

)
(47)

Addition of Velocities - u is the speed you are travelling relative to a stationary observer in frame S′, v′ is the speed
the other thing is moving to the same stationary observer, v is the speed you see the other thing moving at in your
frame S. For the inverse, sub −u for u and swap v′ and v

v =
v′ + u

1 + uv′/c2
(48)

Additionally for multiple dimensions

vy,z =
v′y,z

γ(1 + uv′x/c
2)

(49)

Relativitic Momentum - m = γm0, p⃗ = γm0v⃗

You can’t go faster than light - Relativistic momentum → ∞ as v → c, so an infinite force is needed to accelerate a
mass to speed c

Force at relativistic speeds - F⃗ = ma⃗ leads to some weird stuff by working from p⃗ = γm0v⃗ like the force not having to
be parallel to acceleration, so you mostly want to avoid these and work instead with momentum and energy, which are
conserved.

5.3 Energy

Kinetic Energy - EK = (γ − 1)m0c
2

Mass/Energy Equivalence - Energy and Mass become indistinguishable at relativistic speeds. Assuming all mass can
be converted to energy,

E = E0 + EK = m0c
2 + (γ − 1)m0c

2 = mc2 (50)

The Relation Equation - E2 − p2c2 = m2
0c

4 = E2
0 , this equation is also Lorentz invariant

Massless Particles - Using above as m0 → 0 and v → c yields E = pc
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5.4 Odd Bits
Causality - Events are ’causal’ if ∆x < c∆t, i.e light has time to travel between the events (to transmit information) so
the first could (not neccessarily!) have caused the second. Causailty is Lorentz invariant, so doesn’t change depending
on frame (you’ll never have something happen in a different order than you observed)

Light Cones - The speed of light sets a limit on what events can affect each other, defining a ’past’ and ’future’, while
allowing completely independant events in the past to be observed at the same time in the future.

Maximum Travel - Assuming no friction and constant acceleration, the distance measured from the place you started
at’s frame is given by

x(t′) =
c2

a

(
cosh

(
gt′

c

)
− 1

)
(51)

An acceleration of 1g and a time in your frame t′ of 10 years, get x = 14,800 light years.

5.5 History Lesson
Luminiferous Aether - A medium for light that needed to be super stiff but not transmit anything except light and be
everywhere, was invented to fix Maxell’s equation for the speed of disturbances in a magnetic field, c = 1/

√
µ0ϵ0 as

their findings didn’t fit with galilean velocity addition

Michelson-Morley Experiment - Light going against the ’Aether Wind’ created by the Earth and Sun moving through
space at great speeds, should have its speed reduced (/increased if it’s going with the wind)
As light moves so quickly, the experiment compared the times to travel against/with and perpendicular to the wind
measured at the same time, and then since it still needed to be too precise, compared the difference in the difference when
the experiment is rotated 90 degrees (and then approximate with binomial). The experiment done with interferometry
to get great travel distances, and on a mercury bath to reduce vibration and enable rotation, consistently found no
differences, suggesting no ’Aether Drift’ existed.

Lorentz-Fitzgerald Contraction - Suggesting a contraction factor of 1/γ (although not called that at the time) for objects
moving along the aether wind would fix some problems, but more advanced (versions of the M-M) experiments (i.e
L1 ̸= L2) ruled this out too.
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